Офисный сетевой стандарт fddi. Выбор сетевой технологии построения локальной сети. Одиночное и двойное присоединение к сети

Сеть FDDI {Fiber Distributed Data Interface - волоконно-оптический распределенный интерфейс данных) представляет собой волоконно-опти ческое маркерное кольцо со скоростью передачи данных 100 Мбит/с. Стандарт FDDI был разработан комитетом ХЗТ9.5 (впоследствии переименован в ХЗТ12) ANSI в середине 1980-х гг. После завершения работы над FDD1В ANSI представила его на рассмотрение в ISO. ISO разработала международный вариант FDDI, который полностью совместим с вариантом стандарта, разработанного ANSI.

Схема передачи данных. Двойное кольцо в сети FDD! рассматривается как общая разделяемая среда передачи данных, для которой в качестве метода доступа определен метод маркерного кольца, который близок к методу доступа сетей Token Ring.

Станция может начать передачу данных только после получения от предыдущей станции специального кадра - маркера доступа. Маркер - сигнал управления, состоящий из уникальной последовательности символов, которая циркулирует по кольцу после каждой информационной передачи.В Если же в момент принятия маркера у станции нет данных для передачиВ по сети, то она немедленно передает маркер следующей станции.

Если станция готова к передаче данных, то

  • узел-отправитель:
    • - ждет получения маркера,
    • - захватывает маркер (на определенное время - время удержания маркера (Token Holding Time, ТНТ), после истечения которого станция обязанаВ завершить передачу своего очередного кадра и передать маркер доступаВ следующей станции,
    • - меняет в маркере один бит, преобразующий маркер во флаг началаВ кадра, вносит в кадр информацию, подлежащую пересылке, посылает кадрВ следующей станции ;
  • переданный в сеть кадр будет двигаться по сети от станции к станции, пока нс попадет в узел, которому он адресован;
  • узел назначения:
    • - копирует кадр в свой внутренний буфер,
    • - проверяет корректность полученного кадра (в основном по контрольной сумме),
    • - передает поле данных кадра для последующей обработки протоколуВ вышележащего уровня,
    • - в исходном кадре отмечает следующие признаки: распознаваниеВ адреса, копирование кадра и отсутствие или наличие в нем ошибок,
    • - возвращает кадр в сеть;
  • вновь переданный в сеть кадр будет двигаться по сети от станцииВ к станции, пока не попадет в исходный узел-отправитель;
  • узел-отправитель:
  • - получив кадр, проверяет признаки кадра (получен ли кадр станциейВ назначения, был ли поврежден ),
  • - удаляет кадр из сети,
  • - передает маркер доступа следующей станции.

Механизм адаптивного планирования нагрузки. В сетях на базе технологии FDDI вместо системы приоритетов и резервирования, используемой в сетях на базе технологии Token Ring, применяется механизм адаптивногоВ планирования нагрузки.

Каждая станция сравнивает реальное время обращения маркера по кольцу (Token Rotation Time, TRT) с заранее установленным контрольным временем прибытия маркера (Target Token Rotation Time, TTRT), послеВ чего делается вывод о слабой или сильной загруженности сети. При слабойВ загрузке сети станция может использовать асинхронный режим передачиВ информации (т.е. осуществить передачу дополнительных данных независимо от других станций). При сильной загруженности сети станция можетВ применять только синхронный режим передачи данных, при котором передача осуществляется лишь в течение выделенного времени.

Физическое соединение. Топологию сети, построенной на базе технологии FDDI, можно рассматривать с двух позиций:

  • физически:
    • - двойное кольцо без деревьев,
    • - двойное кольцо с деревьями,
    • - дерево;
  • логически:
  • - разделяемое кольцо.

При этом первичное кольцо используется для передачи данных, а вторичное кольцо является дублирующим (рис. 4.15).

Рис. 4.15.

Физически кольцо состоит из двух или более двухточечных соединений между смежными станциями. Трафик по кольцам движется в противоположных направлениях.

Оборудование сети:

  • станции:
    • - станции двойного подключения {Dual-Attachment Stations , DAS) -В
    • - станции одинарного подключения {Single-Attachment Stations , SAS) -В подключаются только к внешнему кольцу сети и только через концентраторВ или обходной коммутатор, имеющий возможность отключить их при сбое;
  • связующие концентраторы {Wiring Concentrators) - представляютВ собой точки подключения к сети, выполняют также функции управления,В такие как контроль работы сети, диагностика неисправностей, реконфигурация сети; бывают двух типов:
  • - концентраторы двойного подключения {Dual-Attachment Concentrator DAC) - подключаются как к внутреннему, так и к внешнему кольцу сети,
  • - концентраторы одинарного подключения {Single-Attachment Concentrator , SAC) - подключаются только к внешнему кольцу сети;
  • обходные коммутаторы {Bypass Switches) - располагаются междуВ станцией и кольцом и позволяют отключить станцию от сети при возникновении сбоев, замкнув сигнал на себя.

Основные параметры сети FDDI:

  • 1) поддержка до 500 узлов с максимальным расстоянием между соседними узлами 2 км (45 км - если используется одномодовый оптоволоконный кабель) ;
  • 2) максимальная длина кольца - 20 км (200 км, если используетсяВ одномодовый оптоволоконный кабель, по 100 км на кольцо) ;
  • 3) переменный размер кадра (до 4500 байт);
  • 4) длина волны - 1300 нм;
  • 5) максимальная скорость передачи - 100 МБод или 12,5 Мбит/с ;
  • 6) реальная скорость работы - 80 МБод или 10 Мбит/с;
  • 7) рабочая частота - 125 МГц;
  • 8) основной вид кабеля - многомодовый или более качественный одномодовый {Single Mode Fiber , SMF) A оптоволоконный кабель;
  • 9) разъем - оптический разъем MIC {Media Interface Connector) (илиВ разъем SMF-MIC для SMF-кабеля) , который обеспечивает подключениеВ двух волокон кабеля, соединенных с вилкой MIC, к двум волокнам портаВ станции, соединенных с розеткой MIC;
  • 10) источник света - светодиоды (LED) или лазерные диоды с длинойВ волны 1,3 мкм;
  • 11) метод кодирования сигнала - MLT-3;
  • 12) метод физического кодирования - 4В/5В.

Отказоустойчивость сетей на базе технологии FDDI. Основным способом обеспечения отказоустойчивости является подключение станций к двум кольцам. В нормальном режиме работы сети данные передаютсяВ по внешнему кольцу, а внутреннее кольцо при этом не используется.В При возникновении сбоя в сети внешнее кольцо объединяется с внутренним, образуя единое кольцо. Данную операцию осуществляют концентраторы и (или) сетевые адаптеры FDDI.

Другим способом обеспечения отказоустойчивости является использование различных процедур, определяющих наличие отказа в доступе к сети и производящих необходимую реконфигурацию. При единичном отказеВ сеть полностью восстанавливает свою работоспособность, а при множественных отказах сеть распадается на несколько несвязанных, но функционирующих сетей.

Еще одним способом обеспечения отказоустойчивости является метод доступа к среде, т.е. использование метода маркерного кольца, которыйВ исключает возникновение коллизий и позволяет с высокой степенью вероятности просчитать время передачи маркера или данных.

Формат блока данных. В сетях FDDI циркулируют два типа блока данных: маркеры (рис. 4.16) и блоки данных/команд (рис. 4.17).

Рис. 4.16.


Рис. 4.17.

Блок маркера без преамбулы имеет длину 3 байта. Блок данных и блок команд могут иметь разные размеры в зависимости от размеров информационного поля. Блоки данных переносят информацию для протоколовВ более высоких уровней, а блоки команд содержат управляющую информацию.

Поле преамбула (РгеатЫе) (2 или более байт) используется для синхронизации. Первоначально имеет размер 8 байт, но станции, через которые проходит кадр, могут менять (уменьшать) ее размер.

Поле ограничитель начала {Start Delimiter) (длина 1 байт) указывает на начало маркера (или блока данных/команд), содержит сигнальныеВ структуры, которые отличают его от остальной части блока данных.

Поле управление блоком данных {Frame Control ) (длина 1 байт) указывает на размер адресных полей (2 или 6 байт), на тип кадра (синхрон-ный/асинхронный и управляющий/информационный), а также может содержать другую управляющую информацию (например, коды командВ для управляющего кадра).

Поле ограничителя конца {End Delimiter) (длина 1 байт) содержит неинформационные символы, указывающие на конец маркера (или блока данных/команд).

Поля адрес отправителя и адрес получателя идентифицируют станции пункта назначения и источника, длина адресов может быть 6 байт (по аналогии с Ethernet и Token Ring) или 2 байта. При этом поле адреса назначения может содержать индивидуальный, групповой или широковещательный адрес, в то время как адрес источника идентифицирует только однуВ станцию, отправившую блок данных.

Поле данные {Data) (0 до 4478 байт) содержит либо информацию, предназначенную для протокола высшего уровня, либо управляющую информацию.

Поле контрольная сумма {FCS) содержит контрольную сумму, зависящую от содержания блока данных, при помощи которой проверяется целостность кадра. Если повреждение имеется, то блок данных отбрасывается.

Поле состояния блока данных {Frame Status) позволяет станции источника определять, не появилась ли ошибка и был ли блок данных признан и скопирован принимающей станцией.

Применение. Сеть на базе технологии FDDI может применяться в качестве надежной высокоскоростной магистрали или высокопроизводительной сети многоцелевого назначения с большим числом узлов.

Достоинства и недостатки

Достоинства:

  • надежность:
    • - обеспечение избыточности благодаря двойной кольцевой конфигурации сети,
    • - возможность сохранения работоспособности сети при единичныхВ и множественных обрывах посредством сегментирования участков сети;
  • отказоустойчивость:
  • - возможность двойного соединения (Dual Homing) станции с сетьюВ FDD1 (два порта станции подключаются к двум разным концентраторам)В позволяет активировать резервную связь при возникновении сбоев,
  • - реализация так называемого «оптического обхода» обеспечивает прохождение светового сигнала по сети при сбоях в питании станции - световой сигнал обойдет неактивную станцию через оптический переключательВ (Optical Bypass Switch),
  • - однократный обрыв кабеля в любом месте кольца приведет к активации второго волоконно-оптического кольца, так как станции, расположенные по обе стороны обрыва, переконфигурируют путь циркуляции маркераВ и данных;
  • Ограничение связано с необходимостью ограничения времени полного прохожденияВ сигнала по кольцу для обеспечения предельно допустимого времени доступа.
  • Бод - единица измерения скорости цифрового потока. Для некодированиого цифрового сигнала 1 Бод = 1 бит/с. Для кодирования с избыточностью - скорости разные. МБод -В миллион сигналов в секунду.
  • В этом случае дальность физического соединения между соседними узлами может увеличиться до 40-60 км в зависимости от качества кабеля, разъемов и соединений.
  • Кроме разъемов М1С допускается использование разъемов БТ и БС.

Технология Fiber Distributed Data Interface - первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

Попытки применения света в качестве среды, несущей информацию, предпринимались давно - еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет.

Работы по использованию света для передачи информации активизировались в 1960-е годы в связи с изобретением лазера, который мог обеспечить модуляцию света на очень высоких частотах, то есть создать широкополосный канал для передачи большого количества информации с высокой скоростью. Примерно в то же время появились оптические волокна, которые могли передавать свет в кабельных системах, подобно тому как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокнах были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам. Недорогие оптические волокна, обеспечивающие низкие потери мощности светового сигнала и широкую полосу пропускания (до нескольких ГГц) появились только в 1970-е годы. В начале 1980-х годов началось промышленная установка и эксплуатация оптоволоконных каналов связи для территориальных телекоммуникационных систем.

В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволокнных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации - ANSI, в рамках созданного для этой цели комитета X3T9.5.

Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование - сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости

Основы технологии FDDI

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

  • Повысить битовую скорость передачи данных до 100 Мб/с;
  • Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;
  • Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рисунок 2.1), образуя вновь единое кольцо. Этот режим работы сети называется Wrap , то есть "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Рис. 2.1. Реконфигурация колец FDDI при отказе

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца - token ring (рисунок 2.2, а).

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - токен доступа (рисунок 2.2, б). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

Рис. 2.2. Обработка кадров станциями кольца FDDI

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке (рисунок 2.2, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции (рисунок 2.2, г). В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее (рисунок 2.2, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.

На рисунке 2.3 приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме - без установления соединений и без восстановления потерянных или поврежденных кадров.


Рис. 2.3. Структура протоколов технологии FDDI

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:

  • Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62.5/125 мкм;
  • Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам;
  • Параметры оптических разъемов MIC (Media Interface Connector), их маркировка;
  • Длина волны в 1300 нанометров, на которой работают приемопередатчики;
  • Представление сигналов в оптических волокнах в соответствии с методом NRZI.

Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом MLT-3. Спецификации уровней PMD и TP-PMD уже были рассмотрены в разделах, посвященных технологии Fast Ethernet.

Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов. В его спецификации определяются:

  • кодирование информации в соответствии со схемой 4B/5B;
  • правила тактирования сигналов;
  • требования к стабильности тактовой частоты 125 МГц;
  • правила преобразования информации из параллельной формы в последовательную.

Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры.

Технология FDDI (Fiber Distributed Data Interface) - оптоволоконный интерфейс распределенных данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель.

Работы по созданию технологий и устройств для использования волоконно-оптических каналов в локальных сетях начались в 80-е годы, вскоре после начала промышленной эксплуатации подобных каналов в территориальных сетях. Проблемная группа ХЗТ9.5 института ANSI разработала в период с 1986 по 1988 гг. начальные версии стандарта FDDI, который обеспечивает передачу кадров со скоростью 100 Мбит/с по двойному волоконно-оптическому кольцу длиной до 100 км.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

Повысить битовую скорость передачи данных до 100 Мбит/с;

Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

Максимально эффективно использовать потенциальную пропускную

способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru - «сквозным» или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (см рисунок), вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному - в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций попрежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Особенности мтеода доступа.

Для передачи синхронных кадров станция всегда имеет право захватить маркер при его поступлении. При этом время удержания маркера имеет заранее заданную фиксированную величину. Если же станции кольца FDDI нужно передать асинхронный кадр (тип кадра определяется протоколами верхних уровней), то для выяснения возможности захвата маркера при его очередном появлении станция должна измерить интервал времени, который прошел с момента предыдущего прихода маркера. Этот интервал называется временем оборота маркера (Token Rotation Time, TRT). Интервал ТRT сравнивается с другой величиной - максимально допустимым временем оборота маркера по кольцу Т_Оpr. Если в технологии Token Ring максимально допустимое время оборота маркера является фиксированной величиной (2,6 с из расчета 260 станций в кольце), то в технологии FDDI станции договариваются о величине Т_Оpr во время инициализации кольца. Каждая станция может предложить свое значение Т_Оpr, врезультате для кольца устанавливается минимальное из предложенных станциями времен.

Отказоустойчивость технологии.

Для обеспечения отказоустойчивости в стандарте FDDI предусмотрено создание двух оптоволоконных колец - первичного и вторичного.

В стандарте FDDI допускаются два вида подсоединения станций к сети:

Одновременное подключение к первичному и вторичному кольцам называется двойным подключением - Dual Attachment, DA.

Подключение только к первичному кольцу называется одиночным подключением - Single Attachment, SA.

В стандарте FDDI предусмотрено наличие в сети конечных узлов - станций (Station), а также концентраторов (Concentrator). Для станций и концентраторов допустим любой вид подключения к сети - как одиночный, так и двойной. Соответственно такие устройства имеют соответствующие названия: SAS (Single Attachment Station), DAS (Dual Attachment Station), SAC (Single Attachment Concentrator) и DAC (Dual Attachment Concentrator).

Обычно концентраторы имеют двойное подключение, а станции - одинарное, как это показано на рисунке, хотя это и не обязательно. Чтобы устройства легче было правильно присоединять к сети, их разъемы маркируются. Разъемы типа А и В должны быть у устройств с двойным подключением, разъем М (Master) имеется у концентратора для одиночного подключения станции, у которой ответный разъем должен иметь тип S (Slave).

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical) и зависящий от среды подуровень PMD (Physical Media Dependent)

13. Структурированная кабельная система /СКС/. Иерархия в кабельной системе. Выбор типа кабелей для различных подсистем.

Структурированная кабельная система (СКС) - физическая основа информационной инфраструктуры предприятия, позволяющая свести в единую систему множество информационных сервисов разного назначения: локальные вычислительные и телефонные сети, системы безопасности, видеонаблюдения и т. д.

СКС представляет собой иерархическую кабельную систему здания или группы зданий, разделённую на структурные подсистемы. Она состоит из набора медных и оптических кабелей, кросс-панелей, соединительных шнуров, кабельных разъёмов, модульных гнезд, информационных розеток и вспомогательного оборудования. Все перечисленные элементы интегрируются в единую систему и эксплуатируются согласно определённым правилам.

Кабельная система - это система, элементами которой являются кабели и компоненты, которые связаны с кабелем. К кабельным компонентам относится все пассивное коммутационное оборудование, служащее для соединения или физического окончания (терминирования) кабеля - телекоммуникационные розетки на рабочих местах, кроссовые и коммутационные панели (жаргон: «патч-панели») в телекоммуникационных помещениях, муфты и сплайсы;

Структурированная. Структура - это любой набор или комбинация связанных и зависимых составляющих частей. Термин «структурированная» означает, с одной стороны, способность системы поддерживать различные телекоммуникационные приложения (передачу речи, данных и видеоизображений), с другой - возможность применения различных компонентов и продукции различных производителей, и с третьей - способность к реализации так называемой мультимедийной среды, в которой используются несколько типов передающих сред - коаксиальный кабель, UTP, STP и оптическое волокно. Структуру кабельной системы определяет инфраструктура информационных технологий, IT (Information Technology), именно она диктует содержание конкретного проекта кабельной системы в соответствии с требованиями конечного пользователя, независимо от активного оборудования, которое может применяться впоследствии.

14. Сетевые адаптеры /СА/. Функции и характеристики СА. Классификация СА. Принцип работы.

Сетевые адаптеры выступают в качестве физического интерфейса между компьютером и сетевым кабелем. Обычно они вставляются в слоты расширения рабочих станций и серверов. Чтобы обеспечить физическое соединение между компьютером и сетью, к соответствующему порту адаптера после его установки подключается сетевой кабель.

Функции и характеристики сетевых адаптеров.

Сетевой адаптер и его драйвер в компьютерной сети выполняют функцию физического уровня и MAC – уровня. Сетевой адаптер и драйвер осуществляют прием и передачу кадра. Данная опреация проходит в несколько этапов. Чаще всего взаимодействие протоколов друг с другом внутри компьютера происходит посредством буферов, расположенных внутри оперативной памяти.

Известно, что сетевые адаптеры реализуют протоколы, и от того, с каким именно протоколом ведется работа, адаптеры делятся на: Ethernet – адаптеры, FDDI – адаптеры, Token Ring – адаптеры, и многие другие. Большинство современных Ethernet – адаптеров поддерживают две скорости работы, а потому в своем названии содержат еще и приставку 10/100.

Перед тем, как установить сетевой адаптер на компьютер, нужно провести его конфигурирование. В том случае, если компьютер, операционная система и сам сетевой адаптер поддерживают стандарт Plug-and-Play, то адаптер и его драйвер проходят автоматическое конфигурирование. Если же данный стандарт не поддерживается, то сначала необходимо провести конфигурирование сетевого адаптера, а потом точно такие же параметры применить и в конфигурировании драйвера. В данном процессе многое зависит и от производителя сетевого адаптера, а также и от параметров и возможностей шины, для которой предназначается адаптер.

Классификация сетевых адаптеров.

В развитии сетевых адаптеров Ethernet было отмечено целых четыре поколения. Для изготовления первого поколения адаптеров применялись дискретные, логические микросхемы, поэтому они не отличались высокой надежностью. Их буферная память была рассчитана только на один кадр, а это уже говорит о том, что их производительность была очень низкой. К тому же задание конфигурации сетевого адаптера такого типа происходило при помощи перемычек, а значит – вручную.

FDDI

Token Ring и FDDI - это функционально намного более сложные технологии, чем Ethernet на разделяемой среде. Разработчики этих технологий стремились наделить сеть на разделяемой среде многими положительными качествами: сделать механизм разделения среды предсказуемым и управляемым, обеспечить отказоустойчивость сети, организовать приоритетное обслуживание для чувствительного к задержкам трафика, например голосового. Нужно отдать им должное - во многом их усилия оправдались, и сети FDDI довольно долгое время успешно использовались как магистрали сетей масштаба кампуса, в особенности в тех случаях, когда нужно было обеспечить высокую надежность магистрали.

Технологию FDDI можно считать усовершенствованным вариантом Token Ring, так как в ней, как и в Token Ring, основанный на передаче токена, а также кольцевая топология связей, но вместе с тем FDDI работает на более высокой скорости и имеет более совершенный механизм отказоустойчивости.

Технология FDDI стала первой технологией локальных сетей, в которой оптическое волокно, начавшее применяться в телекоммуникационных сетях с 70-х годов прошлого века, было использовано в качестве разделяемой среды передачи данных. За счёт применения оптических систем скорость передачи данных удалось повысить до 100 Мбит/с (позже появилось оборудование FDDI на витой паре, работающее на той же скорости).

Начальные версии FDDI обеспечивают скорость передачи 100 Мбит/с по двойному оптоволоконному кольцу длиной до 100 км. В нормальном режиме данные передаются только по одному кольцу из пары - первичному (primary). Вторичное (secondary) кольцо используется в случае отказа части первичного кольца. По первичному и вторичному кольцам данные передаются в противоположных направлениях, что позволяет соблюсти порядок узлов сети при подключении вторичного кольца к первичному. В случае нескольких отказов, сеть FDDI распадается на несколько отдельные (но функционирующих) сетей.

Сети FDDI не имеют себе ровные при построении опорные магистрали (backbone) локальных сетей, позволяя реализовать принципиально новые возможности - изъятую обработку изображений и интерактивную графику. Обычно устройства (DAS - Dual Attached Station) подключаются до обоих колец одновременно. Пакеты по этим кольцам двигаются в противоположных направлениях. В норме только одно кольцо активно (первичное), но при возникновении сбоя (отказ в одном из узлов) активизируется и второе кольцо, которое заметно повышает надежность системы, позволяя обойти неисправный участок (схема соединений внутри станций-концентраторов на рис. 1 является сильно упрощенной). Предусмотрена возможность подключения станций и только к одному кольцу (SAS - Single Attached Station), что заметно более дешево. К одному кольцу можно подключить до 500 DAS и 1000 SAS. Сервер и клиент имеют разные типы интерфейсов.

Технология FDDI обеспечивает передачу синхронного и асинхронного трафика: синхронный трафик передается всегда, независимо от загруженности кольца, асинхронный трафик может произвольно задерживаться. Каждой станции выделяется часть полосы пропускания, в пределах которой станция может передавать синхронный трафик. Часть полосы пропускания кольца, которое остается, отводится под асинхронный трафик. Сети FDDI не определяют приоритеты для кадров, любой приоритетный трафик должен передаваться, как синхронный, а другие данные - асинхронный.

Стандарт FDDI определяет четыре компонента:

MAC (Media Access Control), что определяет форматы кадров, манипуляции с маркером, адресацию, обработку ошибок при логических отказах (отвечает канальному уровню модели OSI);

PHY (Physical) выполняет физическую и логическую кодировку и декодирование, синхронизацию и кадрирование;

PMD (Physical Medium Dependent) определяет свойства оптических или электрических компонентов, параметры линий связи (PMD и PHY отвечают физическому уровню OSI);

SMT (Station Management) выполняет все функции по управлению и контролю работы других компонентов, определяет конфигурацию узлов и колец, процедуры подключения/отключения, изоляцию элементов, которые отказали, обеспечивает целостность кольца (подключая вторичное кольцо при отказе первичного).

Нетрадиционным для других сетей является концентратор, что используется в FDDI. Он позволяет подключить несколько приборов SAS-типу к стандартному FDDI-кольца, создавая структуры типа дерева. Но такие структуры несут в себе определенные ограничения на длины сетевых элементов, так при использовании повторителя отдаления не должно превышать 1,5 км, а в случае моста 2,5 км (одномодовый вариант). Невзирая на эти ограничения и то, что базовой топологией сетей FDDI является кольцо, звездообразные варианты также имеют право на жизни, допустимые и комбинации этой топологии. В пределах одного дома подключения целесообразно делать через концентратор, отдельные же дома совмещаются за схемой кольца. К кольцу FDDI могут также легко подключаться и субсети Token Ring (через мост или маршрутизатор).

Концентраторы бывают два типов: DAS и SAS. Такие приборы повышают надежность сети, потому что не вынуждают сеть при отключении отдельного прибора переходить в аварийный режим обхода. Применение концентраторов снижает и стоимость подключения к FDDI. Концентраторы могут помочь при создании небольших групповых субсетей, предназначенных для решения специфических задач.

Таблица 2.4 - Характеристики технологии FDDI

Технология ATM

ATM - интегрированный метод сетевого доступа реализации в локальных и глобальных сетях. На основе ATM реализуется масштабируемая магистральная инфраструктура, которая может взаимодействовать с сетями, имеющими разные размеры, скорости и методы адресации.

Технология ATM была разработана в конце 1960-х годов компанией Bell Labs. Инженеры экспериментировали с высокоскоростной коммутацией ячеек, которая стала альтернативой коммутации пакетов.

Ячейки данных, используемые в ATM, меньше в сравнении с элементами данных, которые используются в других технологиях. Небольшой, постоянный размер ячейки, используемый в ATM, позволяет:

Передавать данные по одним и тем же физическим каналам, причём как при низких, так и при высоких скоростях;

Работать с постоянными и переменными потоками данных;

Интегрировать любые виды информации: тексты, речь, изображения, видеофильмы;

Поддерживать соединения типа точка-точка, точка-многоточка, многоточка-многоточка.

Ячейка состоит из двух частей: поле заголовка занимает 5 байт и ещё 48 байт занимает поле полезной нагрузки.

В заголовке ячейки содержатся следующие поля:

Virtual Path Identifier (VPI) (используется для обозначения виртуальных соединений ATM);

Virtual Ccircuit Identifier (VCI) (используется для обозначения виртуальных соединений ATM);

Payload Type (PT) (располагается информация, которая определяет тип даных, которые находятся в поле полезной нагрузки ячейки АТМ);

Congestion Loss Priority (CLP) (Бит CLP в ячейке АТМ имеет такое - же значение, как бит DE в кадре Frame Relay);

Header Error Control (HEC) (размещается проверочная контрольная сумма 4-х предыдущих байтов заголовка).

На основе вышеприведенных методов передачи данных была выбрана технология Ethernet модификации 100Base-TX. Данная технология характеризуется простотой проектирования, низкой стоимостью оборудования, высокой надежностью и скоростью передачи данных.

Сеть FDDI. Скорость 10 Мбит/с недостаточна для многих современных применений сетей. Поэтому разрабатываются технологии и конкретные реализации высокоскоростных ЛВС.

FDDI (Fiber Distributed Data Interface) - ЛВС кольцевой структуры, использующая ВОЛС и специфический вариант маркерного метода доступа.

В основном варианте сети применено двойное кольцо на ВОЛС. Обеспечивается информационная скорость 100 Мбит/с. Расстояние между крайними узлами до 200 км, между соседними станциями - не более 2 км. Максимальное число узлов 500. В ВОЛС используются волны длиной 1300 нм.

Два кольца ВОЛС используются одновременно. Станции можно подключать к одному из колец или к обоим сразу. Использование конкретным узлом обоих колец позволяет для этого узла иметь суммарную пропускную способность в 200 Мбит/с. Другое возможное использование второго кольца - обход с его помощью поврежденного участка (рис. 4.5).

Рис. 4.5. Кольца ВОЛС в сети FDDI

В FDDI используются оригинальные код и метод доступа. Применяется код типа NRZ (без возвращения к нулю), в котором изменение полярности в очередном такте времени воспринимается как 1, отсутствие изменения полярности как 0. Чтобы код был самосинхронизирующимся, после каждых четырех битов передатчик вырабатывает синхронизирующий перепад.

Такое специальное манчестерское кодирование носит название 4b/5b. Запись 4b/5b означает код, в котором для самосинхронизации при передаче 4 бит двоичного кода используется 5 бит так, что не может быть более двух нулей подряд, или после 4 бит добавляется еще один обязательный перепад, что и используется в FDDI.

При таком коде несколько усложняются блоки кодирования и декодирования, но зато повышается скорость передачи по линии связи, так как почти вдвое уменьшается максимальная частота переключения по сравнению с манчестерским кодом.

В соответствии с методом FDDI по кольцу циркулирует пакет, состоящий из маркера и информационных кадров. Любая станция, готовая к передаче, распознав проходящий через нее пакет, вписывает свой кадр в конец пакета. Она же ликвидирует его после того, как кадр вернется к ней после оборота по кольцу и при условии, что он был воспринят получателем. Если обмен происходит без сбоев, то кадр, возвращающийся к станции-отправителю, оказывается в пакете уже первым, так как все предшествующие кадры должны быть ликвидированы раньше.

Сеть FDDI обычно используется как объединяющая в единую сеть много отдельных подсетей ЛВС. Например, при организации информационной системы крупного предприятия целесообразно иметь ЛВС типа Ethernet или Token Ring в помещениях отдельных проектных подразделений, а связь между подразделениями осуществлять через сеть FDDI.

Fiber Distribution Data Interface или FDDI был создан в середине 80-х годов специально для объединения наиболее важных участков сети. Хотя для рабочей станции скорость передачи данных в 10 Мбит/с была великолепной, то для межсерверных коммуникаций она была явно недостаточна. Исходя из этих потребностей, FDDI был спроектирован для связи между серверами и другими важными участками сети и предусматривал возможность управления процессом передачи и его высокую надежность. Это основная причина из-за который он до сих пор занимает такое заметное место на рынке.

В отличие от Ethernet FDDI использует кольцевую структуру, где устройства объединяются в большое кольцо и передают данные последовательно один другому. Пакет может проследовать больше чем через 100 узлов, прежде чем дойдет до адресата. Но не путайте FDDI с Token Ring! В Token Ring используется только один маркер, который передается от одной машине к другой. FDDI использует другую идею - так называемый временной маркер. Каждая машина посылает данные следующей в течении определенного периода времени, о котором они договариваются заранее когда подключаются к кольцу. Станции могут посылать пакетов одновременно, если позволяет время.

Поскольку другие машины не должны ждать, пока освободится среда передачи, то размер пакета может достигать 20000 байт, хотя большинство использует пакеты размером 4500 байт, всего лишь в три раза больше пакета Ethernet. Тем не менее, если пакет предназначен для рабочей станции, подключенной к кольцу с помощью Ethernet, то его размер не будет превышать 1516 байт.

Одно из самых больших достоинств FDDI - это высокая надежность. Обычно он состоит из двух или более колец. Каждая машина может получать и посылать сообщения своим двум соседям. Это схема позволяет функционировать сети даже если оборвали кабель. Когда кабель порван, устройства на обоих концах разрыва начинают работать как заглушка и система продолжает функционировать как одно кольцо, которое проходит через каждое устройство дважды. Поскольку каждый конкретный путь однонаправлен и устройства передают данные в указанное время, то такая схема полностью исключает коллизии. Это позволяет FDDI достичь практически полной теоретической пропускной способности, которая фактически составляет 99% от теоретически возможной скорости передачи данных. Высокая надежность двойного кольца при условии всего выше сказанного заставляет потребителей продолжать покупать оборудование FDDI.

Принцип действия сети FDDI
Сеть FDDI представляет собой волоконно-оптическое маркерное кольцо со скоростью передачи данных 100 Мбит/сек.
Стандарт FDDI был разработан комитетом X3T9.5 Американского национального института стандартизации (ANSI). Сети FDDI поддерживается всеми ведущими производителями сетевого оборудования. В настоящее время комитет ANSI X3T9.5 переименован в X3T12.
Использование в качестве среды распространения волоконной оптики позволяет существенно расширить полосу пропускания кабеля и увеличить расстояния между сетевыми устройствами.
Сравним пропускную способность сетей FDDI и Ethernet при многопользовательском доступе. Допустимый уровень утилизации сети Ethernet лежит в пределах 35% (3.5 Мбит/сек) от максимальной пропускной способности (10 Мбит/сек), в противном случае вероятность возникновения коллизий становится не слишком высокой и пропускная способность кабеля резко снизится. Для сетей FDDI допустимая утилизация может достигать 90-95% (90-95 Мбит/сек). Таким образом, пропускная способность FDDI приблизительно в 25 раз выше.
Детерминированная природа протокола FDDI (возможность предсказания максимальной задержки при передаче пакета по сети и возможность обеспечить гарантированную полосу пропускания для каждой из станций) делает его идеальным для использования в сетевых АСУ в реальном времени и в приложениях, критичных ко времени передачи информации (например, для передачи видео и звуковой информации).
Многие из своих ключевых свойств FDDI унаследовала от сетей Token Ring (стандарт IEEE 802.5). Прежде всего - это кольцевая топология и маркерный метод доступа к среде. Маркер - специальный сигнал, вращающийся по кольцу. Станция, получившая маркер, может передавать свои данные.
Однако FDDI имеет и ряд принципиальных отличий от Token Ring, делающий ее более скоростным протоколом. Например, изменен алгоритм модуляции данных на физическом уровне. Token Ring использует схему манчестерского кодирования, требующую удвоения полосы передаваемого сигнала относительно передаваемых данных. В FDDI реализован алгоритм кодирования "пять из четырех" - 4В/5В, обеспечивающий передачу четырех информационных бит пятью передаваемыми битами. При передаче 100 Мбит информации в секунду физически в сеть транслируется 125 Мбит/сек, вместо 200 Мбит/сек, что потребовалось бы при использовании манчестерского кодирования.
Оптимизировано и управление доступа к среде (Medium Access Control - VAC). В Token Ring оно основано на побитовой основе, а в FDDI на параллельной обработке группы из четырех или восьми передаваемых битов. Это снижает требования к быстродействию оборудования.
Физически кольцо FDDI образовано волоконно-оптическим кабелем с двумя светопроводящими волокнами. Одно из них образует первичное кольцо (primary ring), является основным и используется для циркуляции маркеров данных. Второе волокно образует вторичное кольцо (secondary ring), является резервным и в нормальном режиме не используется.
Станции, подключенные к сети FDDI, подразделяются на две категории.
Станции класса А имеют физические подключения к первичному и вторичному кольцам (Dual Attached Station - двукратно подключенная станция);
2. Станции класса B имеют подключение только к первичному кольцу (Single Attached Station - однократно подключенная станция) и подключается только через специальные устройства, называемые концентраторами.
Порты сетевых устройств, подключаемых к сети FDDI, классифицируются на 4 категории: А порты, В порты, М порты и S порты. Портом А называется порт, принимающий данные из первичного кольца и передающий их во вторичное кольцо. Порт В - это порт, принимающий данные из вторичного кольца и передающий их в первичное кольцо. М (Master) и S (Slave) порт передают и принимают данные с одного и того же кольца. М порт используется на концентраторе для подключения Single Attached Station через S порт.
Стандарт X3T9.5 имеет ряд ограничений. Общая длина двойного волоконно-оптического кольца - до 100 км. К кольцу можно подключить до 500 станций класса А. Расстояние между узлами при использовании многомодового волоконно-оптического кабеля - до 2 км, а при использовании одномодового кабеля определяется в основном параметрами волокна и приемо-передающего оборудования (может достигать 60 и более км).

Топология.
Применяемые при построении ЛВС механизмы контроля потоков являются топологически зависимыми, что делает невозможным одновременное использование Ethernet IEEE 802.x, FDDI ANSI, Token Ring IEEE 802.6 и прочих в пределах единой среды распространения. Несмотря на тот факт, что Fibre Channel в какой-то мере может напоминать столь привычные нам ЛВС, его механизм контроля потоков никак не связан с топологией среды распространения и базируется на совершенно иных принципах.
Каждый N_порт при подключении к решетке Fibre Channel проходит через процедуру регистрации (log-in) и получает информацию об адресном пространстве и возможностях всех остальных узлов, на основании чего становится ясно, с кем из них он сможет работать и на каких условиях. А так как механизм контроля потоков в Fibre Channel является прерогативой самой решетки, то для узла совершенно неважно, какая топология лежит в ее основе.

Точка-точка

Самая простая схема, основанная на последовательном полнодуплексном соединении двух N_портов с взаимоприемлемыми параметрами физического соединения и одинаковыми классами сервиса. Один из узлов получает адрес 0, а другой - 1.
В сущности, такая схема может рассматриваться как частный случай кольцевой топологии, где нет необходимости в разграничении доступа путем арбитража. В качестве типичного примера такого подключения можем привести наиболее часто встречающееся соединение сервера с внешним RAID массивом.

Петля с арбитражным доступом

Классическая схема подключения до 126 портов, с которой все и начиналось, если судить по аббревиатуре FC-AL.
Любые два порта в кольце могут обмениваться данными посредством полнодуплексного соединения точно так же, как и в случае "точка-точка". При этом все остальные выполняют роль пассивных повторителей сигналов уровня FC-1 с минимальными задержками, в чем, пожалуй, заключается одно из основных преимуществ технологии FC-AL перед SSA. Дело в том, что адресация в SSA построена на знании количества промежуточных портов между отправителем и получателем, поэтому адресный заголовок кадра SSA содержит счетчик переходов (hop count). Каждый встречающийся на пути кадра порт уменьшает содержимое этого счетчика на единицу и после этого заново генерирует CRC, тем самым существенно увеличивая задержку передачи между портами. Для избежания этого нежелательного эффекта разработчики FC-AL предпочли использовать абсолютную адресацию, что в итоге позволило ретранслировать кадр в неизменном виде и с минимальной латентностью.
Передаваемое с целью арбитража слово ARB не понимается и не используется обычными N_портами, поэтому при такой топологии дополнительные свойства узлов обозначаются, как NL_порт.

Основным преимуществом петли с арбитражным доступом является низкая себестоимость в пересчете на количество подключенных устройств, поэтому наиболее часто она используется для объединения большого количества жестких дисков с дисковым контроллером. К сожалению, выход их строя любого NL_порта или соединительного кабеля размыкает петлю и делает ее неработоспособной, из-за чего в чистом виде такая схема сейчас уже не считается пер...

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

· Повысить битовую скорость передачи данных до 100 Мб/с.

· Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.

· Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рис. 31), образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Рис. 31. Реконфигурация колец FDDI при отказе

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца - token ring (рис. 32, а).

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - токен доступа (рис. 32, б). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу (рис. 32, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном, по контрольной сумме), передает его поле данных для последующей обработки протоколу, лежащего выше FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции (рис. 32, г). В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее (рис. 32, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.

Рис. 32. Обработка кадров станциями кольца FDDI

На рисунке 33 приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме - без установления соединений и без восстановления потерянных или поврежденных кадров.

Рис. 33. Структура протоколов технологии FDDI

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:

· Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62.5/125 мкм.

· Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам.

· Параметры оптических разъемов MIC (Media Interface Connector), их маркировка.

· Длина волны в 1300 нанометров, на которой работают приемопередатчики.

· Представление сигналов в оптических волокнах в соответствии с методом NRZI.

Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом MLT-3. Спецификации уровней PMD и TP-PMD уже были рассмотрены в разделах, посвященных технологии Fast Ethernet.

Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов. В его спецификации определяются:

· кодирование информации в соответствии со схемой 4B/5B;

· правила тактирования сигналов;

· требования к стабильности тактовой частоты 125 МГц;

· правила преобразования информации из параллельной формы в последовательную.

Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры:

· Протокол передачи токена.

· Правила захвата и ретрансляции токена.

· Формирование кадра.

· Правила генерации и распознавания адресов.

· Правила вычисления и проверки 32-разрядной контрольной суммы.

Уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью. В спецификации SMT определено следующее:

· Алгоритмы обнаружения ошибок и восстановления после сбоев.

· Правила мониторинга работы кольца и станций.

· Управление кольцом.

· Процедуры инициализации кольца.

Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например, потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

В следующей таблице представлены результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring.

Характеристика FDDI Ethernet Token Ring
Битовая скорость 100 Мб/с 10 Мб/с 16 Мб/c
Топология Двойное кольцо деревьев Шина/звезда Звезда/кольцо
Метод доступа Доля от времени оборота токена CSMA/CD Приоритетная система резервирования
Среда передачи данных Многомодовое оптоволокно, неэкранированная витая пара Толстый коаксиал, тонкий коаксиал, витая пара, оптоволокно Экранированная и неэкранированная витая пара, оптоволокно
Максимальная длина сети (без мостов) 200 км (100 км на кольцо) 2500 м 1000 м
Максимальное расстояние между узлами 2 км (-11 dB потерь между узлами) 2500 м 100 м
Максимальное количество узлов 500 (1000 соединений) 260 для экранированной витой пары, 72 для неэкранированной витой пары
Тактирование и восстановление после отказов Распределенная реализация тактирования и восстановления после отказов Не определены Активный монитор
  • II. ВОЗРАСТНЫЕ ОСОБЕННОСТИ ДЕТЕЙ СТАРШЕГО ДОШКОЛЬНОГО ВОЗРАСТА
  • II. Основные принципы и правила служебного поведения государственных (муниципальных) служащих