Что такое кэш процессора. Кэш, кеш, cash — память. Для чего нужна кэш память? Влияние размера и скорости кэша на производительность Центральный процессор оперативная кэш память

Кэш - встроенная в процессор память, в которую записываются наиболее часто используемые данные (команды) оперативной памяти, что существенно ускоряет работу.

Объем кэша L1 (от 8 до 128 Кб)
Объем кэш-памяти первого уровня.
Кэш-память первого уровня - это блок высокоскоростной памяти, расположенный прямо на ядре процессора.
В него копируются данные, извлеченные из оперативной памяти.

Сохранение основных команд позволяет повысить производительность процессора за счет более высокой скорости обработки данных (обработка из кэша быстрее, чем из оперативной памяти).

Емкость кэш-памяти первого уровня невелика и исчисляется килобайтами.
Обычно «старшие» модели процессоров обладают большим объемом кэша L1.
Для многоядерных моделей указывается объем кэш-памяти первого уровня для одного ядра.

Объем кэша L2 (от 128 до 12288 Кб)
Объем кэш-памяти второго уровня.
Кэш-память второго уровня - это блок высокоскоростной памяти, выполняющий те же функции, что и кэш L1 (см. «Объем кэша L1»), однако имеющий более низкую скорость и больший объем.

Если вы выбираете процессор для ресурсоемких задач, то модель с большим объемом кэша L2 будет предпочтительнее.
Для многоядерных процессоров указывается суммарный объем кэш-памяти второго уровня.

Объем кэша L3 (от 0 до 16384 Кб)
Объем кэш-памяти третьего уровня.
Интегрированная кэш-память L3 в сочетании с быстрой системной шиной формирует высокоскоростной канал обмена данными с системной памятью.

Как правило, кэш-памятью третьего уровня комплектуются только CPU для серверных решений или специальные редакции «настольных» процессоров.

Кэш-памятью третьего уровня обладают, например, такие линейки процессоров, как Intel Pentium 4 Extreme Edition, Xeon DP, Itanium 2, Xeon MP и прочие.

Twin BiCS FLASH - новая технология трехмерной флэш-памяти

11 декабря 2019 г. на Международном совещании по электронным устройствам (IEDM) IEEE корпорация TOKYO-Kioxia анонсировала технологию трехмерной флэш-памяти - Twin BiCS FLASH.

Драйвер AMD Radeon Software Adrenalin Edition 2020 19.12.2 WHQL (добавлено)

10 декабря компания AMD представила мега драйвер Radeon Software Adrenalin 2020 Edition 19.12.2 WHQL.

Накопительное обновление Windows 10 1909 KB4530684

10 декабря 2019 г. Microsoft выпустила накопительное обновление KB4530684 (Build 18363.535) для Windows 10 November 2019 Update (версия 1909) на базе процессоров x86, x64 (amd64), ARM64 и Windows Server 2019 (1909) для систем на базе процессоров x64.

Драйвер NVIDIA Game Ready GeForce 441.66 WHQL

Драйвер NVIDIA GeForce Game Ready 441.66 WHQL включает поддержку игр MechWarrior 5: Mercenaries и Detroit: Become Human, а также добавляет поддержку G-SYNC мониторов MSI MAG251RX и ViewSonic XG270.

Одним из немаловажных факторов повышающих производительность процессора, является наличие кэш-памяти, а точнее её объём, скорость доступа и распределение по уровням.

Уже достаточно давно практически все процессоры оснащаются данным типом памяти, что ещё раз доказывает полезность её наличия. В данной статье, мы поговорим о структуре, уровнях и практическом назначении кэш-памяти, как об очень немаловажной характеристике процессора .

Что такое кэш-память и её структура

Кэш-память – это сверхбыстрая память используемая процессором, для временного хранения данных, которые наиболее часто используются. Вот так, вкратце, можно описать данный тип памяти.

Кэш-память построена на триггерах, которые, в свою очередь, состоят из транзисторов. Группа транзисторов занимает гораздо больше места, нежели те же самые конденсаторы, из которых состоит оперативная память . Это тянет за собой множество трудностей в производстве, а также ограничения в объёмах. Именно поэтому кэш память является очень дорогой памятью, при этом обладая ничтожными объёмами. Но из такой структуры, вытекает главное преимущество такой памяти – скорость. Так как триггеры не нуждаются в регенерации, а время задержки вентиля, на которых они собраны, невелико, то время переключения триггера из одного состояния в другое происходит очень быстро. Это и позволяет кэш-памяти работать на таких же частотах, что и современные процессоры.

Также, немаловажным фактором является размещение кэш-памяти. Размещена она, на самом кристалле процессора, что значительно уменьшает время доступа к ней. Ранее, кэш память некоторых уровней, размещалась за пределами кристалла процессора, на специальной микросхеме SRAM где-то на просторах материнской платы. Сейчас же, практически у всех процессоров, кэш-память размещена на кристалле процессора.


Для чего нужна кэш-память процессора?

Как уже упоминалось выше, главное назначение кэш-памяти – это хранение данных, которые часто используются процессором. Кэш является буфером, в который загружаются данные, и, несмотря на его небольшой объём, (около 4-16 Мбайт) в современных процессорах , он дает значительный прирост производительности в любых приложениях.

Чтобы лучше понять необходимость кэш-памяти, давайте представим себе организацию памяти компьютера в виде офиса. Оперативная память будет являть собою шкаф с папками, к которым периодически обращается бухгалтер, чтобы извлечь большие блоки данных (то есть папки). А стол, будет являться кэш-памятью.

Есть такие элементы, которые размещены на столе бухгалтера, к которым он обращается в течение часа по несколько раз. Например, это могут быть номера телефонов, какие-то примеры документов. Данные виды информации находятся прямо на столе, что, в свою очередь,увеличивает скорость доступа к ним.

Точно так же, данные могут добавиться из тех больших блоков данных (папок), на стол, для быстрого использования, к примеру, какой-либо документ. Когда этот документ становится не нужным, его помещают назад в шкаф (в оперативную память), тем самым очищая стол (кэш-память) и освобождая этот стол для новых документов, которые будут использоваться в последующий отрезок времени.

Также и с кэш-памятью, если есть какие-то данные, к которым вероятнее всего будет повторное обращение, то эти данные из оперативной памяти, подгружаются в кэш-память. Очень часто, это происходит с совместной загрузкой тех данных, которые вероятнее всего, будут использоваться после текущих данных. То есть, здесь присутствует наличие предположений о том, что же будет использовано «после». Вот такие непростые принципы функционирования.

Уровни кэш-памяти процессора

Современные процессоры, оснащены кэшем, который состоит, зачастую из 2–ух или 3-ёх уровней. Конечно же, бывают и исключения, но зачастую это именно так.

В общем, могут быть такие уровни: L1 (первый уровень), L2 (второй уровень), L3 (третий уровень). Теперь немного подробнее по каждому из них:

Кэш первого уровня (L1) – наиболее быстрый уровень кэш-памяти, который работает напрямую с ядром процессора, благодаря этому плотному взаимодействию, данный уровень обладает наименьшим временем доступа и работает на частотах близких процессору. Является буфером между процессором и кэш-памятью второго уровня.

Мы будем рассматривать объёмы на процессоре высокого уровня производительности Intel Core i7-3770K. Данный процессор оснащен 4х32 Кб кэш-памяти первого уровня 4 x 32 КБ = 128 Кб. (на каждое ядро по 32 КБ)

Кэш второго уровня (L2) – второй уровень более масштабный, нежели первый, но в результате, обладает меньшими «скоростными характеристиками». Соответственно, служит буфером между уровнем L1 и L3. Если обратиться снова к нашему примеру Core i7-3770 K, то здесь объём кэш-памяти L2 составляет 4х256 Кб = 1 Мб.

Кэш третьего уровня (L3) – третий уровень, опять же, более медленный, нежели два предыдущих. Но всё равно он гораздо быстрее, нежели оперативная память. Объём кэша L3 в i7-3770K составляет 8 Мбайт. Если два предыдущих уровня разделяются на каждое ядро, то данный уровень является общим для всего процессора. Показатель довольно солидный, но не заоблачный. Так как, к примеру, у процессоров Extreme-серии по типу i7-3960X, он равен 15Мб, а у некоторых новых процессоров Xeon, более 20.

Чипы на большинстве современных настольных компьютеров имеют четыре ядра, но производители микросхем уже объявили о планах перехода на шесть ядер, а для высокопроизводительных серверов и сегодня 16-ядерные процессоры далеко не редкость.

Чем больше ядер, тем больше проблема распределения памяти между всеми ядрами при одновременной совместной работе. С увеличением числа ядер всё больше выгодно минимизировать потери времени на управлении ядрами при обработке данных - ибо скорость обмена данными отстает от скорости работы процессора и обработки данных в памяти. Можно физически обратиться к чужому быстрому кэшу, а можно к своему медленному, но сэкономить на времени передаче данных. Задача усложняется тем, что запрашиваемые программами объемы памяти не четко соответствуют объемам кэш-памяти каждого типа.

Физически разместить максимально близко к процессору можно только очень ограниченный объем памяти - кэш процесcора уровня L1, объем которого крайне незначителен. Даниэль Санчес (Daniel Sanchez), По-Ан Цай (Po-An Tsai) и Натан Бэкмен (Nathan Beckmann) - исследователи из лаборатории компьютерных наук и искусственного интеллекта Массачусетского технологического института - научили компьютер конфигурировать разные виды своей памяти под гибко формируемую иерархию программ в реальном режиме времени. Новая система, названная Jenga, анализирует объемные потребности и частоту обращения программ к памяти и перераспределяет мощности каждого из 3 видов процессорного кэша в комбинациях обеспечивающих рост эффективности и экономии энергии.


Для начала исследователи протестировали рост производительности при комбинации статичной и динамической памяти в работе над программами для одноядерного процессора и получили первичную иерархию - когда какую комбинацию лучше применять. Из 2 видов памяти или из одного. Оценивались два параметра -задержка сигнала (латентность) и потребляемая энергия при работе каждой из программ. Примерно 40% программ стали работать хуже при комбинации видов памяти, остальные - лучше. Зафиксировав какие программы «любят» смешанное быстродействие, а какие - размер памяти, исследователи построили свою систему Jenga.

Они виртуально протестировали 4 виды программ на виртуальном компьютере с 36 ядрами. Тестировали программы:

  • omnet - Objective Modular Network Testbed, библиотека моделирования C и платформа сетевых средств моделирования (синий цвет на рисунке)
  • mcf - Meta Content Framework (красный цвет)
  • astar - ПО для отображения виртуальной реальности (зеленый цвет)
  • bzip2 - архиватор (фиолетовый цвет)


На картинке показано где и как обрабатывали данные каждой из программ. Буквы показывают, где выполняется каждое приложение (по одному на квадрант), цвета показывают, где находятся его данные, а штриховка указывает на второй уровень виртуальной иерархии, когда он присутствует.

Уровни кэша

Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Самой быстрой памятью является кэш первого уровня - L1-cache, поскольку расположена на одном с процессором кристалле. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. L1 кэш работает на частоте процессора, и обращение к нему может производиться каждый такт. Зачастую является возможным выполнять несколько операций чтения/записи одновременно. Объём обычно невелик - не более 128 Кбайт.

С кэшем L1 взаимодействует кэш второго уровня - L2. Он является вторым по быстродействию. Обычно он расположен либо на кристалле, как и L1, либо в непосредственной близости от ядра, например, в процессорном картридже. В старых процессорах - набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования - при общем объёме кэша в 8 Мбайт на каждое ядро приходится по 2 Мбайта. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В задачах, связанных с многочисленными обращениями к ограниченной области памяти, например, СУБД, его полноценное использование дает рост производительность в десятки раз.

Кэш L3 обычно еще больше по размеру, хотя и несколько медленнее, чем L2 (за счет того, что шина между L2 и L3 более узкая, чем шина между L1 и L2). L3 обычно расположен отдельно от ядра ЦП, но может быть большим - более 32 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании. Применение кэша третьего уровня оправдано в очень узком круге задач и может не только не дать увеличения производительности, но наоборот и привести к общему снижению производительности системы.

Отключение кэша второго и третьего уровней наиболее полезно в математических задачах, когда объём данных меньше размера кэша. В этом случае, можно загрузить все данные сразу в кэш L1, а затем производить их обработку.


Периодически Jenga на уровне ОС реконфигурирует виртуальные иерархии для минимизации объемов обмена данных, учитывая ограниченность ресурсов и поведение приложений. Каждая реконфигурация состоит из четырех шагов.

Jenga распределяет данные не только в зависимости от того, какие программы диспетчеризируются - любящие большую односкоростную память или любящие быстродействие смешанных кэшей, но и в зависимости от физической близости ячеек памяти к обрабатываемым данным. Независимо от того - какой вид кэша требует программа по умолчанию или по иерархии. Главное чтобы минимизировать задержку сигнала и энергозатраты. В зависимости от того, сколько видов памяти «любит» программа, Jenga моделирует латентность каждой виртуальной иерархии с одним или двумя уровнями. Двухуровневые иерархии образуют поверхность, одноуровневые иерархии - кривую. Затем Jenga проектирует минимальную задержку в размерах VL1, что дает две кривые. Наконец, Jenga использует эти кривые для выбора лучшей иерархии (то есть размера VL1).

Применение Jenga дало ощутимый эффект. Виртуальный 36-ядерный чип стал работать на 30 процентов быстрее и использовал на 85 процентов меньше энергии. Конечно, пока Jenga - просто симуляция работающего компьютера и пройдет некоторое время, прежде чем вы увидите реальные примеры этого кеша и еще до того, как производители микросхем примут его, если понравится технология.

Конфигурация условной 36 ядерной машины

  • Процессоры . 36 ядер, x86-64 ISA, 2.4 GHz, Silvermont-like OOO: 8B-wide
    ifetch; 2-level bpred with 512×10-bit BHSRs + 1024×2-bit PHT, 2-way decode/issue/rename/commit, 32-entry IQ and ROB, 10-entry LQ, 16-entry SQ; 371 pJ/instruction, 163 mW/core static power
  • Кэши уровня L1 . 32 KB, 8-way set-associative, split data and instruction caches,
    3-cycle latency; 15/33 pJ per hit/miss
  • Служба предварительной выборки Prefetchers . 16-entry stream prefetchers modeled after and validated against
    Nehalem
  • Кэши уровня L2 . 128 KB private per-core, 8-way set-associative, inclusive, 6-cycle latency; 46/93 pJ per hit/miss
  • Когерентный режим (Coherence) . 16-way, 6-cycle latency directory banks for Jenga; in-cache L3 directories for others
  • Global NoC . 6×6 mesh, 128-bit flits and links, X-Y routing, 2-cycle pipelined routers, 1-cycle links; 63/71 pJ per router/link flit traversal, 12/4mW router/link static power
  • Блоки статической памяти SRAM . 18 MB, one 512 KB bank per tile, 4-way 52-candidate zcache, 9-cycle bank latency, Vantage partitioning; 240/500 pJ per hit/miss, 28 mW/bank static power
  • Многослойная динамическая память Stacked DRAM . 1152MB, one 128MB vault per 4 tiles, Alloy with MAP-I DDR3-3200 (1600MHz), 128-bit bus, 16 ranks, 8 banks/rank, 2 KB row buffer; 4.4/6.2 nJ per hit/miss, 88 mW/vault static power
  • Основная память . 4 DDR3-1600 channels, 64-bit bus, 2 ranks/channel, 8 banks/rank, 8 KB row buffer; 20 nJ/access, 4W static power
  • DRAM timings . tCAS=8, tRCD=8, tRTP=4, tRAS=24, tRP=8, tRRD=4, tWTR=4, tWR=8, tFAW=18 (все тайминги в tCK; stacked DRAM has half the tCK as main memory)

Кэш центрального процессора

Функционирование

Диаграмма кэша памяти ЦПУ

Кэш - это память с большей скоростью доступа, предназначенная для ускорения обращения к данным, содержащимся постоянно в памяти с меньшей скоростью доступа (далее «основная память»). Кэширование применяется ЦПУ , жёсткими дисками , браузерами и веб-серверами .

Кэш состоит из набора записей. Каждая запись ассоциирована с элементом данных или блоком данных (небольшой части данных), которая является копией элемента данных в основной памяти. Каждая запись имеет идентификатор , определяющий соответствие между элементами данных в кэше и их копиями в основной памяти.

Когда клиент кэша (ЦПУ, веб-браузер, операционная система) обращается к данным, прежде всего исследуется кэш. Если в кэше найдена запись с идентификатором, совпадающим с идентификатором затребованного элемента данных, то используются элементы данных в кэше. Такой случай называется попаданием кэша . Если в кэше не найдено записей, содержащих затребованный элемент данных, то он читается из основной памяти в кэш, и становятся доступным для последующих обращений. Такой случай называется промахом кэша . Процент обращений к кэшу, когда в нём найден результат, называется уровнем попаданий или коэффициентом попаданий в кэш.

Например, веб-браузер проверяет локальный кэш на диске на наличие локальной копии веб-страницы, соответствующей запрошенному URL. В этом примере URL - это идентификатор, а содержимое веб-страницы - это элементы данных.

Если кэш ограничен в объёме, то при промахе может быть принято решение отбросить некоторую запись для освобождения пространства. Для выбора отбрасываемой записи используются разные алгоритмы вытеснения .

При модификации элементов данных в кэше выполняется их обновление в основной памяти. Задержка во времени между модификацией данных в кэше и обновлением основной памяти управляется так называемой политикой записи .

В кэше с немедленной записью каждое изменение вызывает синхронное обновление данных в основной памяти.

В кэше с отложенной записью (или обратной записью ) обновление происходит в случае вытеснения элемента данных, периодически или по запросу клиента. Для отслеживания модифицированных элементов данных записи кэша хранят признак модификации (изменённый или «грязный» ). Промах в кэше с отложенной записью может потребовать два обращения к основной памяти: первое для записи заменяемых данных из кэша, второе для чтения необходимого элемента данных.

В случае, если данные в основной памяти могут быть изменены независимо от кэша, то запись кэша может стать неактуальной . Протоколы взаимодействия между кэшами, которые сохраняют согласованность данных, называют протоколами когерентности кэша .

Всем пользователям хорошо известны такие элементы компьютера, как процессор, отвечающий за обработку данных, а также оперативная память (ОЗУ или RAM), отвечающая за их хранение. Но далеко не все, наверное, знают, что существует и кэш-память процессора(Cache CPU), то есть оперативная память самого процессора (так называемая сверхоперативная память).

В чем же состоит причина, которая побудила разработчиков компьютеров использовать специальную память для процессора? Разве возможностей ОЗУ для компьютера недостаточно?

Действительно, долгое время персональные компьютеры обходились без какой-либо кэш-памяти. Но, как известно, процессор – это самое быстродействующее устройство персонального компьютера и его скорость росла с каждым новым поколением CPU. В настоящее время его скорость измеряется миллиардами операций в секунду. В то же время стандартная оперативная память не столь значительно увеличила свое быстродействие за время своей эволюции.

Вообще говоря, существуют две основные технологии микросхем памяти – статическая память и динамическая память. Не углубляясь в подробности их устройства, скажем лишь, что статическая память, в отличие от динамической, не требует регенерации; кроме того, в статической памяти для одного бита информации используется 4-8 транзисторов, в то время как в динамической – 1-2 транзистора. Соответственно динамическая память гораздо дешевле статической, но в то же время и намного медленнее. В настоящее время микросхемы ОЗУ изготавливаются на основе динамической памяти.

Примерная эволюция соотношения скорости работы процессоров и ОЗУ:

Таким образом, если бы процессор брал все время информацию из оперативной памяти, то ему пришлось бы ждать медлительную динамическую память, и он все время бы простаивал. В том же случае, если бы в качестве ОЗУ использовалась статическая память, то стоимость компьютера возросла бы в несколько раз.

Именно поэтому был разработан разумный компромисс. Основная часть ОЗУ так и осталась динамической, в то время как у процессора появилась своя быстрая кэш-память, основанная на микросхемах статической памяти. Ее объем сравнительно невелик – например, объем кэш-памяти второго уровня составляет всего несколько мегабайт. Впрочем, тут стоить вспомнить о том, что вся оперативная память первых компьютеров IBM PC составляла меньше 1 МБ.

Кроме того, на целесообразность внедрения технологии кэширования влияет еще и тот фактор, что разные приложения, находящиеся в оперативной памяти, по-разному нагружают процессор, и, как следствие, существует немало данных, требующих приоритетной обработки по сравнению с остальными.

История кэш-памяти

Строго говоря, до того, как кэш-память перебралась на персоналки, она уже несколько десятилетий успешно использовалась в суперкомпьютерах.

Впервые кэш-память объемом всего в 16 КБ появилась в ПК на базе процессора i80386. На сегодняшний день современные процессоры используют различные уровни кэша, от первого (самый быстрый кэш самого маленького объема – как правило, 128 КБ) до третьего (самый медленный кэш самого большого объема – до десятков МБ).

Сначала внешняя кэш-память процессора размещалась на отдельном чипе. Со временем, однако, это привело к тому, что шина, расположенная между кэшем и процессором, стала узким местом, замедляющим обмен данными. В современных микропроцессорах и первый, и второй уровни кэш-памяти находятся в самом ядре процессора.

Долгое время в процессорах существовали всего два уровня кэша, но в CPU Intel Itanium впервые появилась кэш-память третьего уровня, общая для всех ядер процессора. Существуют и разработки процессоров с четырехуровневым кэшем.

Архитектуры и принципы работы кэша

На сегодняшний день известны два основных типа организации кэш-памяти, которые берут свое начало от первых теоретических разработок в области кибернетики – принстонская и гарвардская архитектуры. Принстонская архитектура подразумевает единое пространство памяти для хранения данных и команд, а гарвардская – раздельное. Большинство процессоров персональных компьютеров линейки x86 использует раздельный тип кэш-памяти. Кроме того, в современных процессорах появился также третий тип кэш-памяти – так называемый буфер ассоциативной трансляции, предназначенный для ускорения преобразования адресов виртуальной памяти операционной системы в адреса физической памяти.

Упрощенно схему взаимодействия кэш-памяти и процессора можно описать следующим образом. Сначала происходит проверка наличия нужной процессору информации в самом быстром - кэше первого уровня, затем - в кэше второго уровня, и.т.д. Если же нужной информации в каком-либо уровне кэша не оказалось, то говорят об ошибке, или промахе кэша. Если информации в кэше нет вообще, то процессору приходится брать ее из ОЗУ или даже из внешней памяти (с жесткого диска).

Порядок поиска процессором информации в памяти:

Именно таким образом Процессор осуществляет поиск инфоромации

Для управления работой кэш-памяти и ее взаимодействия с вычислительными блоками процессора, а также ОЗУ существует специальный контроллер.

Схема организации взаимодействия ядра процессора, кэша и ОЗУ:

Кэш-контроллер является ключевым элементом связи процессора, ОЗУ и Кэш-памяти

Следует отметить, что кэширование данных – это сложный процесс, в ходе которого используется множество технологий и математических алгоритмов. Среди базовых понятий, применяющихся при кэшировании, можно выделить методы записи кэша и архитектуру ассоциативности кэш-памяти.

Методы записи кэша

Существует два основных метода записи информации в кэш-память:

  1. Метод write-back (обратная запись) – запись данных производится сначала в кэш, а затем, при наступлении определенных условий, и в ОЗУ.
  2. Метод write-through (сквозная запись) – запись данных производится одновременно в ОЗУ и в кэш.

Архитектура ассоциативности кэш-памяти

Архитектура ассоциативности кэша определяет способ, при помощи которого данные из ОЗУ отображаются в кэше. Существуют следующие основные варианты архитектуры ассоциативности кэширования:

  1. Кэш с прямым отображением – определенный участок кэша отвечает за определенный участок ОЗУ
  2. Полностью ассоциативный кэш – любой участок кэша может ассоциироваться с любым участком ОЗУ
  3. Смешанный кэш (наборно-ассоциативный)

На различных уровнях кэша обычно могут использоваться различные архитектуры ассоциативности кэша. Кэширование с прямым отображением ОЗУ является самым быстрым вариантом кэширования, поэтому эта архитектура обычно используется для кэшей большого объема. В свою очередь, полностью ассоциативный кэш обладает меньшим количеством ошибок кэширования (промахов).

Заключение

В этой статье вы познакомились с понятием кэш-памяти, архитектурой кэш-памяти и методами кэширования, узнали о том, как она влияет на производительность современного компьютера. Наличие кэш-памяти позволяет значительно оптимизировать работу процессора, уменьшить время его простоя, а, следовательно, и увеличить быстродействие всей системы.